How to map an equation into computer code

I started with the equation for the total electric field for a horizontal electric dipole above an infinite, flat, perfect electric conductor, from Balanis Equation 4-116 :

$$E = j \eta \frac{k I_0 l}{4 \pi r} e^{-jkr} j 2 \sin(kh \cos \theta) \sqrt{1 - \sin^2 \theta \sin^2 \phi}$$
^[1]

The first step is to clear out the imaginary parts. So I simplified things with the following substitutions.

$$A = 2\sin(kh\cos\theta) \qquad B = \sqrt{1 - \sin^2\theta\sin^2\phi} \qquad Q = \eta \frac{kI_0l}{4\pi r}$$

Which gives us:

 $E = j Q e^{-jkr} j A B$

Euler's identity: $e^{jx} = \cos x + j \sin x$

 $E = j^2 ABQ(\cos(-kr) + j\sin(-kr))$ apply Euler's identity

The cosine function is symmetric around the origin: $\cos(-x) = \cos(x)$

 $E = j^2 ABQ(\cos(kr) + j\sin(-kr))$ cosine symmetry

Squaring j gives us -1, while cubing it gives us -j for:

$$E = -1 ABQ \cos(kr) - j ABQ \sin(-kr)$$

Eliminating the imaginary portion leaves us with:

$$E = -ABQ\cos(kr)$$
 Go Lobos! [2]

Back substitution gives us:

$$E = -\eta \frac{k I_0 l}{4 \pi r} \cos(kr) 2 \sin(kh \cos \theta) \sqrt{1 - \sin^2 \theta \sin^2 \phi}$$

This represents the electric field potential at every point in volts per meter. Because I want to display the magnitude of the vector {E, θ , ϕ } I will ignore the minus sign. I will scale the magnitude for best presentation so the 2 is superfluous also. That leaves us with:

$$E = scale * \eta \frac{k I_0 l}{4 \pi r} \cos(kr) \sin(kh \cos \theta) \sqrt{1 - \sin^2 \theta \sin^2 \phi} \qquad \text{for the application.}$$

My graphics system uses ϕ as elevation and θ as azimuth, the opposite of the text's convention. After I swap θ and ϕ the equation translates into the following computer code :

$$float E = scale * (ETA*k*I0*l) / (4.0*PI*r) & after \phi \theta swap \\ * cos(k*r) * sin(k*h * cos(RAD*phi)) \\ * sqrt(1 - sin(RAD*phi) * sin(RAD*phi) * sin(RAD*theta) * sin(RAD*theta));$$

where:

#define RAD 0.0174532925	// degree to radian conversion
#define PI 3.1415926535	// the ratio of circumference to diameter
#define ETA 376.991118308	<pre>// characteristic impedance of free space</pre>
float h = 1.3;	// height of antenna in wavelengths
float I0 = 2.0;	// maximum current in amperes
float r = 5000;	// distance from antenna to observer in meters
float f = 100;	// frequency in MHz
float lambda = 300 / f;	// wavelength in meters
float l = lambda / 2;	// length of antenna in meters
float k = TWOPI / lambda;	// save some space
float scale = 5000.0;	<pre>// scaling factor for display purposes</pre>
float dTheta = 3.0;	// azimuth step size
float dPhi = 3.0;	// elevation step size

 Balanis, Constantine A., Antenna Theory - Analysis and Design (John Wiley & Sons, Inc., 1997) page 176 equation 4-116
 University of New Mexico's mascot