How to map an equation into computer code

I started with the equation for the total electric field for a horizontal electric dipole above an infinite, flat, perfect electric conductor, from Balanis Equation 4-116 :

$$
\begin{equation*}
E=j \eta \frac{k I_{0} l}{4 \pi r} e^{-j k r} j 2 \sin (k h \cos \theta) \sqrt{1-\sin ^{2} \theta \sin ^{2} \phi} \tag{1}
\end{equation*}
$$

The first step is to clear out the imaginary parts. So I simplified things with the following substitutions.

$$
A=2 \sin (k h \cos \theta) \quad B=\sqrt{1-\sin ^{2} \theta \sin ^{2} \phi} \quad Q=\eta \frac{k I_{0} l}{4 \pi r}
$$

Which gives us:

$$
E=j Q e^{-j k r} j A B
$$

Euler's identity: $\quad e^{j x}=\cos x+j \sin x$

$$
E=j^{2} A B Q(\cos (-k r)+j \sin (-k r)) \quad \text { apply Euler's identity }
$$

The cosine function is symmetric around the origin: $\cos (-x)=\cos (x)$

$$
E=j^{2} A B Q(\cos (k r)+j \sin (-k r)) \quad \text { cosine symmetry }
$$

Squaring j gives us -1 , while cubing it gives us -j for:

$$
E=-1 A B Q \cos (k r)-j A B Q \sin (-k r)
$$

Eliminating the imaginary portion leaves us with:

$$
E=-A B Q \cos (k r)
$$

Go Lobos! [2]
Back substitution gives us:

$$
E=-\eta \frac{k I_{0} l}{4 \pi r} \cos (k r) 2 \sin (k h \cos \theta) \sqrt{1-\sin ^{2} \theta \sin ^{2} \phi}
$$

This represents the electric field potential at every point in volts per meter. Because I want to display the magnitude of the vector $\{\mathrm{E}, \theta, \varphi\}$ I will ignore the minus sign. I will scale the magnitude for best presentation so the 2 is superfluous also. That leaves us with:

$$
E=\operatorname{scale} * \eta \frac{k I_{0} l}{4 \pi r} \cos (k r) \sin (k h \cos \theta) \sqrt{1-\sin ^{2} \theta \sin ^{2} \phi} \quad \text { for the application. }
$$

My graphics system uses φ as elevation and θ as azimuth, the opposite of the text's convention. After I swap θ and φ the equation translates into the following computer code :

$$
\begin{aligned}
\text { float } \mathrm{E} & =\operatorname{scale} *(\mathrm{ETA} * \mathrm{k} * \mathrm{I} 0 * \mathrm{l}) /(4.0 * \mathrm{PI} * \mathrm{r}) \quad \text { after } \varphi \theta \text { swap } \\
& * \cos (\mathrm{k} * \mathrm{r}) * \sin (\mathrm{k} * \mathrm{~h} * \cos (\mathrm{RAD} * \mathrm{phi})) \\
& * \operatorname{sqrt}\left(1-\sin \left(\mathrm{RAD}^{*} \mathrm{phi}\right) * \sin \left(\mathrm{RAD}^{*} \mathrm{phi}\right) * \sin \left(\mathrm{RAD}^{*} \text { theta }\right) * \sin \left(\mathrm{RAD}^{*} \text { theta }\right)\right) ;
\end{aligned}
$$

where:
\#define RAD 0.0174532925 // degree to radian conversion
\#define PI 3.1415926535 // the ratio of circumference to diameter
\#define ETA 376.991118308 // characteristic impedance of free space
float $\mathrm{h}=1.3$;
float I0 = 2.0;
// height of antenna in wavelengths
// maximum current in amperes
float $\mathrm{r}=5000 ; \quad / /$ distance from antenna to observer in meters
float $\mathrm{f}=100$; // frequency in MHz
float lambda = $300 /$ f; // wavelength in meters
float l = lambda / 2; // length of antenna in meters
float $\mathrm{k}=$ TWOPI / lambda; // save some space
float scale $=5000.0$;
// scaling factor for display purposes
float dTheta $=3.0$;
float dPhi = 3.0;
// azimuth step size
// elevation step size
[1] Balanis, Constantine A., Antenna Theory - Analysis and Design (John Wiley \& Sons, Inc., 1997) page 176 equation 4-116
[2] University of New Mexico's mascot

