
Memory

Computers have a variety of memory types. Inside of the CPU there are at least three levels of cache
memory, which store data and chunks of files, allowing each thread to run as fast as it can. Modern
graphics cards have a phenomenal amount of memory, normally limited to use on the card. However,
you can access that extra memory (and processor power) to increase the speed of your application.
Even more memory can be added with a USB memory stick using Flash technology.

The memory you will be using most often is RAM (random access memory). This is available to your
processor via the memory bus. Depending on the architecture of the chip, this bus may also have data
and addresses flowing along it. The operating system sees RAM two different ways: as stack memory
or heap memory. Stack memory is used when you create an array in your application, or when you use
recursion in a subroutine. Heap memory is the most commonly used memory, directly accessible by
the programmer. It is manipulated through the use of these commands: malloc() and free() in C, or
new() and delete() while using C++.

 When you launch your application the operating system gives it access to a multi-gigabyte chunk of
memory. One half of that memory is used by the OS for loading linked libraries and other things
necessary to keep the application and the OS in communication. The other half is available for you, the
programmer, to use for your application. Your chunk of working memory is allocated in two different
ways. First as a stack, the second as a heap. The stack memory is used for arrays, which are accessed
with an index variable, statically allocated at compile time. The heap is accessed in chunks, which are
dynamically allocated at run time.

While there is a vast amount of heap memory, stack memory space is limited. The OS provides a
certain amount when a process begins. Each stack frame contains a number of values about the state of
the CPU. These include: return address, function parameters, and local variables of the function.
When a function recurses another stack frame is built, and populated with data about the new CPU
state. Make sure any recursive functions are not overly deep, or you will hit the stack’s memory limit
since there is only so much stack space available. Creating very large arrays is another way to hit that
OS defined limit. If you want to solve large problems use heap memory, then access it via pointers
mimicking an array address – such as temperature[i][j]. Using this style:

temperature = (double *) malloc(sizeof(double) * (n+1) * (n+1));

for (i=0; i<900; i++)
 for (j=0; j<900; j++)
 temperature[i*n + j] = 995.0; // n = width of space

you can access memory allocated from the heap using an array indexing technique. Thus far I’ve been
able to allocate 4 GB of space as one ‘pseudo’ array to use for my simulations. I have used much more
as independently allocated objects.

I have focused on teaching you about using memory in chunks since the very beginning of this course.
Hopefully, this has helped you learn how and when to use pointers. Memory is very cheap these days.
Have fun using as much of it as you can.

Memory deallocation is performed differently for each language. It is called garbage collection. Java
and Python garbage collect automatically, but have their own little gotchas. In the middle of something
they may decide to garbage collect, instead of doing the programmer's bidding. Bogs things down
immensely. In C you are responsible for doing it yourself. It is left to the OS to recover the memory in
applications which do something, then exit. In a long running application the programmer needs to be
more careful. It is best to release the memory which you have allocated. In C, use malloc() to allocate
heap memory, and use free() to release that memory back to the free pool. In C++ things are a little
different, it requires new() and delete().

You want to set any 'floating' pointers to NULL. This really helps while debugging. Yes, you
immediately assign it to your newest node but, consistency really helps. When you are creating a new
node begin with all unassigned nodes pointing at NULL. There are a lot of pointers getting changed
when you delete a node from a doubly-linked list,. Keeping all that straight takes a bit of drawing, and
some discipline. Standardizing your methods helps you find any bugs you may have introduced. Make
sure to keep track of your heap memory allocation. Both in their allocation, and during their release
back to the OS. This makes your life more serene.

