
2) Beginnings

These notes are about why I do things the way I do them and why I use certain tools.  Reading code 
teaches me how other folks solve a problem, but the real learning comes when I write and edit my own 
code.  I use a plain editor, instead of a full blown integrated development environment (IDE), because 
of impatience.  When I imagine some code I want to write it down, compile it, and see how it works.  I 
can have my simple editor open, ready to write/edit/run code, with only a few clicks .  If I call up 
Microsoft Visual Studio I have to wait for over a minute before I can even start to write code.  The IDE 
from Atmel is even slower, taking almost three minutes.  So I have learned to use smaller, lighter tools. 
I am more productive because I no longer fight with the tools.  They do EXACTLY what I want them 
to do and little more.  I can write my ideas quickly, then set up makefiles and project folders afterward. 
I have templates to start most projects, all I need to do is edit them a little.  I change the makefile to 
reflect the current project and that's about it; then I am ready to add my new code.  Learning from 
tested procedures sets you up to succeed.

Normally, I wake up with ideas and want to write them down.  If my code editor won't wake up fast 
enough I'll use a pad and pencil.  Mostly I want to capture the pseudo code in my head onto paper or 
onto the screen.  Once I flesh out my ideas I put comment markers // in front of each line.  I use the 
pseudo code as comments while building the app.  I include a lot of notes in the comment lines to keep 
track of changes I am thinking about or have made.

Over time I have taken to using lighter tools and creating more templates to use.  The templates allow 
me to create working code much faster.  I tend to work top-down so I can compile and run the code 
from almost the very start.  Any function which I haven't written yet exists as a stub which does 
nothing and returns nothing; it is just a place holder.  As I fill in those stubs I get more functionality 
with each compile.  I also keep an extensive library of most of the code I have written.  I copy chunks 
from files in that library for any given project.  Over the years these functions have become more 
generalized and easier to implement.

Using a makefile may seem old school, but it gives me better control over the compile and link 
processes.  It requires very few computer resources.  You can direct where each portion of code or data 
will go while using them for microcontroller programming.   One portion will burn to flash while 
another goes into EEPROM; one area is for the program, the other is for any data it may require.  You 
can also write to the EEPROM from your application.  Using a makefile gives me knowledge about the
processor, the memory structure, and the libraries necessary to link everything together.

I used notepad++ for years until I finally got frustrated with the way it auto-formatted things.  Even 
turning that off was not enough.  So I moved to the PSPad editor because I can use Whitesmiths’ 
formatting with a press of a button.  I change it to whatever other format is desired with another button 
press.  Eclipse allows this too but did not in the past.



You should get a decent code editor.  They provide you with highlighting and formatting.  I am using 
PSPad now because it allows the formatting style I like.  Eclipse is another editor, but it is enclosed in 
an IDE which takes up more space.  PSPad and Eclipse are free.  They work for all the languages I use 
and many, many others.  In the long run this saves a lot of keystrokes, plus it has a great search and 
replace engine. Reading code from your editor of choice is the most common way to examine code.  
Seeing it improperly formatted just gives me shivers!

I thought my formatting style was all my own, developed over years of writing a variety of languages, 
on many computers.  What really fixed it into my head and fingers was Pascal.  The brackets and 
braces just felt right.  The indentation style felt right too.  White space is cheap and really helps in 
comprehending files as you read them.  But, what I thought was my own had been claimed.  
Whitesmiths style came up when I did a search.  I also is found it in the Eclipse IDE.  With a few 
keystrokes Eclipse will transform terribly formatted code into perfectly formatted code.  It is just like 
magic :)

Read here: https://en.wikipedia.org/wiki/Indentation_style#Whitesmiths_style for examples.  Indenting 
the body of looping structures, keeping the braces around it, helps me see modules and how they 
structure the program’s flow.  One thing I learned from Whitesmiths was its switch command 
formatting.  Since I don’t use the switch command very often a formatting preference had not 
crystallized for me.  

Many editors won’t let you format code properly, or make it so much of a pain to change that you have 
to modify your methods to conform.  Once again, I think this is a matter of freedom.  If I have to fight 
with an editor over how to format a file I won’t use it very long.  

Since I write code under both Windows and Linux operating systems, I need two different editors.  On 
Windows I use PSPad, as I have mentioned.  Under Linux, I am still trying a number of them to see 
which is the best fit.  Eclipse works well once you get through all of the IDE hoops.  gedit was working
fine, then it wasn’t, then it was.  Flaky software I don’t like.  I do use nano if I don’t care about 
formatting.  Sublime Text2 is good, I’ve been testing it.  Currently I am testing Geany.  It doesn’t seem 
to mind my formatting but I’ve only been using it for editing, not for writing new code.  So it needs 
more testing.  

My indents are standardized to 3 spaces.  I have seen examples using 2, 4, or 5 spaces.  I find 2 spaces 
to be too few to notice in a multiple loop structure.  I find 4 and 5 to be wasteful of space under the 
same context.  3 spaces feels just right.  Makefiles are notorious for needing a true tab rather than using
spaces.  Normally I use three spaces which allows me to work from a generic text editor or a full blown
IDE on the same file.  Using a tab can mean your indentations become 8 spaces deep on some editors 
or 4 on others or 5 on yet others.  By translating a tab into 3 spaces or simply typing 3 spaces you get 
uniformity across editors.

Poorly formatted code is hard to read and even more difficult to debug.  Properly formatted code, with 
plenty of whitespace and many comments, is your best way to be able to understand the code you are 
writing right now, in six months, or in six years.  Formatting and comments are your link to sanity.  

https://en.wikipedia.org/wiki/Indentation_style#Whitesmiths_style


I like PSPad as an editor.  It also has the lightest project apparatus I’ve found yet.  I have decided to 
include PSPad project files (*.ppr) for every lesson.  If you have installed PSPad on  your Windows 
box you can double click on the *.ppr file and PSPad will open with all of the files of the application 
open and ready to edit.  Easy navigation between each file in the editor makes life easier.  Copy and 
paste from one to another is simple.  Creating a new project is very simple too.  Either open all of the 
necessary files in the editor and hit new project from files, or you can create a new project and fill it 
with new files one by one.  It does not demand you do things in any given way.  Freedom.  It is also 
very lightweight, fast, and free.  

You will be using a terminal window (Command Prompt) a lot.  To create a new one on a Linux box 
just type ctrl-alt-T.  On a Windows box go to Start | All Programs | Accessories | Command Prompt.  On
my Ubuntu box I have it available near the top of the Task Bar.  On my Windows box I dragged it from 
my Start menu onto the toolbar close to the lower left.  I use it so often I make sure it is easily available
with a mouse click.  On my Ubuntu box I have three terminal windows open automatically on start up.  
They are that important to me.  I like the control and the freedom.  (Noticing a theme yet? :)

By learning, and using, generic tools I can test my code against a number of compilers.  I can edit the 
code anywhere I go because I am not tied to any IDE.  I can take a flash drive with my work and edit 
any file anywhere I go.  In fact, I can take an entire Ubuntu OS on my flash drive with my work and 
have the environment ready to go from any computer I can boot.  But normally I just need an editor and
a place to sit; or even just a pad of paper and a pencil.  Ideas are in my head ready to coalesce on paper 
or on a screen.  

The application on the computer screen is a map of the problem space, my computer hardware, and my 
ability to craft software.  I see computers as tools, like saws or hammers, with which I can build what I 
imagine.  

www.pspad.com

https://www.pspad.com/en/download.htm

https://en.wikipedia.org/wiki/Indentation_style#Whitesmiths_style

http://www.pspad.com/
https://en.wikipedia.org/wiki/Indentation_style#Whitesmiths_style
https://www.pspad.com/en/download.htm

